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introduction

Demographic surveys are highly useful to developing na-
tions. These undertakings may provide high quality data at
low cost. They are ‘ particularly valuable as a means of ob-
taining vital statistics where civil registration (is) non-exist-
ent” (U.N., 1971). As a result, a substantial number of coun-
tries have conducted such a survey, e.g., seventeen around
1971 (U.N,, 1971).

An important goal of some demographic surveys has been
the collection of age-specific mortality data for the calculation
of age-spacific mortality rates. These rates, of fundamental
importance to population projection analysis and concomitant
social and economic planning, are the main concern of this paper.

To be optimally useful, data collected in any manner for
any purpose must be both accurate and precise.

Accuracy is a quality dependent upon error. Data which
contain many errors are inaccurate; data free from error are
accurate. For example, let us consider a datum used in cal-
culating an age-specific mortality rate: a death. To be accurate,
this datum, of course, must account for a real death. In
addition, the placement of the datum in an age category must
be correct. Finally, the death accounted for must necessarily
have occurred to a member of the population at risk under
observation. Given a limited budget for the collection of age-
specific mortality data, accuracy is inversely related to the
number of data collected. The fewer the data, the more the
survey staff can spend on collection and investigation of each
one to guarantee its accuracy. Thus, in the case of vital data
such as age-specific deaths, accuracy is inversely related to
the size of the population at risk. This fact is well known, and
holds a central position in the rationale for undertaking demo-
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graphic surveys (as opposed to much larger data collecting
operations). (See U.N,, n.d. p. 44.)

Precision is a quality dependent upon both the nature of
the phenomenon being measured and the tool used to meas-

ure it; at issue is the crudeness of measurement. A very crude

measurement ( which incidentally may be very accurate) is
imprecise; a very fine measurement is precise. For example,
let us consider a quality of the environment which a demo-
graphic survey team may undertake to measure: an age-specific
value of the force of mortality which, say, is equivalent to
.001 per year (or 1 death per 1000 population at risk per year).
To measure this force precisely requires the observation of at
least 1000 people for a period of one year. Any smaller po-
pulation at risk cannot yield mortality data such that a force
of mortality of .001 per year may be calculated. One death in
a population at risk of 500 observed for one year, for example,
would yield an age-specific mortality rate of .002 per year,
double the rate actually being measured. As deaths occur in
units, the only smaller rate achievable from this population
for one year is 0.0, if no deaths occur. Now, .002 may be a
perfectly accurate death rate. However, it is a crude represen-
tation of the actual force of mortality, .001. Thus, in the meas-
urement of age-specific mortality, precision is directly related
to the size of the population at risk.

Therefore, the precision with which a demographic sur-
vey measures a quality of the environment such as force of
mortality is inversely related to the accuracy of its tools of
measurement such as mortality data. Fortunately, accurate
mortality data which yield imprecise rates may be used. to
derive more precise rates.

Age-specific mortality is a continuous J-shaped fumection
of age. Erratic fluctuations in this pattern indicate imprecisely
measured rates, if the underlying mortality data are accurate.
Thus, anomalous rates of 0.0 indicate imprecision, as do saw-
toothed anomalies in the J-shaped of the curve. These ano-
malies are intolerable for most purposes such as population
projection analysis.

Methods have been presented in the literature for choosing
a smooth model mortality schedule from imprecise or incom-
plete age:-specific mortality data. The model data are then used
for whatever purpose the empirical data were collected. These
techniques are not limited to data collected in demographic
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surveys. They have been applied to historical data (Hollings-
worth, 1969) and data extrapolated from the present into the
future (Shryock and Siegel, 1973, p. 813).

A model mortality schedule is a list of age-specific mor-
tality values which have been derived from analogous em-
pirical mortality schedules, and are expected to apply in many
similar situations for other countries or at other times. A
model mortality schedule, then, may be considered a general-
ization of empirical data.

The rationale for the development of several different
model schedules is essentially this: TUnder different environ-
mental conditions with different mizes of causes of death,
human populations experience age-specific mortality in dif-
ferent ways, which result in differently shaped age-specific
mortality curves. Coale and Demeny (1966) have demonstrated
that such a shape, or model of mortality is relatively stable
over a broad range of levels of mortality, or values of expect-
ation of life at birth. By discovering different models of
mortality and developing means for deriving mortality sched-
ules of different levels of mortality within these models, one
may go a considerable way toward mapping the complete
human experience of mortality in these two dimensions.

The bulk of model mortality schedules which have been
published to date have been prepared by the U.N. (1955),
Coale and Demeny (1966), and Brass (e.g., 1968). Not all of
the published models are independent of one another. How-
ever, the four Coale and Demeny ( 1966) models, named West,
North, East, and South (not to be interpreted as referring to
regions of the world as a whole), and the Brass (1968) model
for sub-Saharan Africa do compose a set of five relatlvely
independent models.

Model mortality schedules are generally published in “fa-
milies”. A family of model mortality schedules is a set of
schedules of different levels of mortality which all conform
to a model of mortality. For example, the Coale and Demeny
(1966) model West family of schedules all conform to the
model West shape, but range in expectation of life at birth
(for females) from 20.00 to 77.50.

Using a number of families of model mortality schedules,
one may find the model mortality schedule which most closely
fits a set of empirical data. This model schedule may be consi-
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dered a close approximation of the actual age schedule of the
force of mortality underlying the empirical data. A number of
techniques for linking empirical mortality data to model data
have been presented in the literature by, for example, Coale
and Demeny (1966), the U.N. (1967), Brass (1968), and Car-
rier and Goh (1972). Each of these techniques has been de-
signed with empirical age-specific mortality data of particular
precision and completeness in mind. (By completeness, we
refer to the completeness with which the age data include
all age categories.)

The authors of this paper have recently presented an
additional technique which may be used with empirical mor-
tality data of any extent of precision and completeness. How-
ever, in comparison to the other techniques referred to above,
ours is especially useful for the type of mortality data one
would expect to result from a demographic survey, relatively
complete, relatively accurate, but lacking optimal precision.

Our technique is built around a closeness of fit statistic
from the family of statistics referred to as maximum likelihood,
or maximum likelihood estimator, statistics. We use the sta-
tistics in conjunction with a number of families of model mor-
tality schedules, such as the four Coale and Demeny (1966)
model families. The statistic is used to compute the fit between
a set of empirical data, namely, an age schedule of population
at risk and an age schedule of observed deaths, and each
mode! schedule selected for comparison. When we compute a
value of closeness of fit we treat the model mortality schedule
as a hypothetical force of mortality which might have been
experienced by the empirical population at risk. The value
of closeness of fit is actually the probability that had the force
-of mortality represented by the model schedule acted on the
empirical population at risk, the empirical age schedule of
deaths would have resulted. The model mortality schedule which
produces the highest probability value is the closest-fitting
‘schedule.

The reliability of our statistic varies according to the age
structure of the population at risk, and its overall size. By
using a Monte-Carlo type technique (to be described later),
a computer can inexpensively produce reliability values for
each application of our statistic. We think this capability should
be useful for the planner of a demographic survey. With a rough
idea of the age structure and mortality level of a population
to be surveyed, the planner can compute the sizes of population
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at risk necessary to achieve different levels of reliability with
the maximum likelihood statistic.

In the remainder of this paper we shall illustrate our
method with demographic survey data generated by Madigan
(1971) in the Philippines, namely, mortality data collected
for urban females in Misamis Oriental. Great pains were taken
by Madigan’s team to provide complete, accurate sex-age-specific
mortality data. Not unexpectedly, however, imprecise sex-age-
specific mortality rates resulted.

The anomalies in age-specific mortality rates illustrated
by one of Madigan’s empirical mortality schedules graphed
in Figure 1 led him to substitute model for empirical data. He
states, ‘“The observed rates obviously labor under the effects
of random variation due to time sampling. Unevenness will be
found in the curves of mortality if the observed rates are
plotted on graph paper and a line drawn connecting these
points” (Madigan, 1971: 133).

Madigan chose to work with Coale and Demeny (1966)
model mortality schedules and stable age distributions in con-
verting his mortality data to more precise form. It may be
useful to compare the general characteristics of the technique
with which he worked with our own.

Madigan (1971) described the conversion technique he
chose as follows:

These rates were derived by redistributing the observed
rates, corrected by the Chandra Sekar-Deming estimate
of missed cases (which was distributed by age groups
in proportion to the observed deaths), according to per-
centages of total deaths occuring in each of the different
age groups of the appropriate Coale-Demeny Model-West
life stables already referred to. The appropriate model
table for each area and sex set of rates was determined
by the birth, death, and natural increase values found in
the observed sex population.

(p. 133)

We feel that the conversion technique described by Ma-
dlgan does not make optlmal use of the data which he so
painstakingly collected. In using the above technique, Madigan
was forced to assume that the age distributions of his empirical
populations at risk were stable. This assumption is crucial in
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choosing the model schedule, and then in redistributing deaths
according to a stable age distribution based upon it. Figure 2
illustrates the difference between the age structure of the
population at risk which experienced the mortality rates graph-
ed.in Figure 1, and the stable age distribution which Madigan’s
technique assumed it to be. Clearly, the assumption of stability,
and the results based upon it, are tenuous for this particular
population.

More importantly, however, the technique Madigan em-
ployed did not make use of the rich information at his disposal
for. selecting model data. Instead, crude rates were used. Ma-
digan’s final age-specific mortality estimates simply are not
related to the age-specific mortality data he collected. Merely
the  total number of deaths, births, and the age-specific po-
pulation at risk were used fto produce the final estimates of
mortality.

Our technique both avoids tenuous assumptions such as
stability in age structure, and uses the full richness of age-
specific mortality data in making the choice of closest fitting
model data. Unlike the one chosen by Madigan, our technique
does not depend, a priori, on the choice of a particular family
of model schedules. In fact our statistic informs that choice,
when used with a number of families of model schedules, thus
locating the position of an empirical data set in {wo dimensions
of mortality (level and model), versus one (level).

Methods

. .The likelihood statistic underlying our technique has been
discussed at length previously (Fulton and Ristow, 1975). Thus,
we do not describe it fully here. Rather, we present a work-
ing-formula which has been designed for ease of computing:

- I
(1) C=2=nDx;1ln (n; Mx;) + (n;Nx;-n;Dx;)1n(1-n;Mx,),
e=1

where: C is the value of closeness of fit between the model
‘ mortality schedule and the empirical mortality data.

7 identifies age group ¢, where 7 varies from the
v .. first chronological age group (e.g., 0-1 year of
age) to the last age group observed, I.
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n;Dx; is the number of deaths observed in the popu-
lation of age group 4.

n;Mx; is the age-specific mortality rate for age group
¢ in the model mortality schedule which is being
compared to the empirical data.

n;Nx,; is the number of people at risk of dying in age
group .

x; is the age of the youngest members of age group 4.

n; is the width of the age group 4. Thus age group
i spans the ages x; to x; + n;.

The value of C defined above is a summary value of
closeness of fit over all age categories. Actual computations
other than this final summation proceed by age category. Within
an age category we are interested in four values which are
combined in formula 1:

1) nDx, the number of deaths occurring to the population
at risk,

2) 1n(nMx), the natural log of the model mortality rate,

3) nNx-nDx, the number of survivors left of the popu-
lation at risk at the end of the observation period, and

4) 1n(1-nMx), the natural log of 1.0 minus the model
mortality rate.

A work sheet which might be set up for computing the
value of C is presented as Table 1. The empirical data in Table
1 have been reconstructed from Madigan’s (1971) report. The
model schedule used is Coale and Demeny’s (1966) model West,
level 20. Notice that the calculations are those which might
easily be made on a good pocket or desk calculator.

If the analysis is to proceed by hand, one work sheet is
needed for each model mortality schedule. It is recommended
that model schedules be used one model family at a time, find-
ing the closest fitting model schedule within a family before
proceeding to the next.

Formula 1 yields negative values of C exclusively. There-
fore, in comparing the values of C for different model sched-
ules, the sign of the values may be disregarded.
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The lower the value of C, the closer the fit between the
model schedules in question and the empirical mortality data.
If one computes values of C for an entire family of model
schedules, one finds a unique minimum value of C indicative
of the schedule most closely fitting the empirical data. (An
example of such a set of C values is presented in Table 2 for
Madigan’s urban female data and Coale and Demeny’s model
West family of mortality schedules.) This means that one
need not compute C values for an entire model family of
schedules.

Before computing C for any model schedule within a fam-
ily, we estimate the level of the schedule which seems most
likely to produce the lowest value of C. Then we compute the
value of C for the schedule in the same family which is of the
next higher level. If this value of C is higher than the first,
we repeat the procedure for the schedule in the family which
is of the next lower level (to that of the first schedule). The
idea is to “bracket” the lowest value of C which the family
of schedules will yield with two higher levels of C.

It is not difficult to derive a reasonable estimate for the
level of the schedule which will most closely fit the empirical
data. This estimate may be made “by eye” using empirical mor-
tality data from an age category which yields relatively pre-
cise data, i.e., one with a large population at risk and a rela-
tively large mortality rate, e.g., the age group 1-4 years. The
choice of this age group may vary according to the age struc-
ture of the population at risk. When the age group is chosen,
its empirical mortality rate is computed and compared with the
model mortality rates for the same age group found in a family
of model schedules. The model schedule whose age rate in
question most closely matches the empirical rate is chosen as
the rough estimate of the closest fitting models schedule within
that family.

Once the closest fitting schedule within one family of
schedules is found, it is not necessary to repeat the initial
estimation procedure for the remaining model families. Instead,
one begins the search for the closest fitting model schedule
within these families with the schedule of the level which
proved to be closest fitting in the first family analyzed.

Hence, relatively few comparisons between empirical and
model data (using formula 1) need be made to locate the clos-
est fitting model schedule from among a number of families
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of model schedules. This is the model schedule which yields
the smallest value of C.

Even though similar model schedules are employed, val-
ues of C computed for different sets of empirical data are not
strictly comparable, due to a simplification made in deriving
formula 1. This simplification allows much greater ease in
computation, and does not affect comparisons of values of C
computed for the same set of empirical data., As values of C
need not be compared across sets of empirical data for the
function presented in this paper, the simplification in formula
1 should not restrict the researcher whose primary interest is
finding closest fitting model data to individual sets of em-
pirical data. A more formal version of formula 1 is presented
in Fulton and Ristow, 1975.

Once a closest fitting model schedule has been chosen for
a particular set of empirical data, the reliability of the choice
may be found, if a high speed computer is available. One pos-
sible reliability test makes use of the Monte Carlo technique,
which is relatively inexpensive.

The technique we suggest requires as input the age-spe-
cific population at risk and the model schedule which most
closely fits the empirical mortality data. Using the Monte-
Carlo technique, empirical mortahty data for one year’s observ-
ation are simulated by exposmg each member of the population
to the probability of dying in one year’s time for the appropriate
age group (approximated by nMx). A random number is
drawn for each exposure from a pool of random numbers
which are evenly distributed between 0. 0. and 1.0, the minimum
and maximum probability of dying. The random number is
compared with the probability of dying. If the random number
exceeds: the probability of dying, the exposed member of the
simulated population at risk survives the period of observation.
If not, the member does not survive. This process is repeated
for every member of the population to produce one set of si-
mulated empirical mortality data. A number of sets, e.g., 20,
are produced. These sets represent a sample of empirical re-
gime and population at risk The empirical data are then
processed to find the closest fitting model data from a number
of families of model data, to see how reliable the process is
in indicating the actual model mortality regime which under-
lies the simulated data. In other words, we use the model
mortality schedule to represent the mortality regime experienced
by the real population at risk in the real world. Thus, we
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1nd1rectly test, through simulation, the reliability of the tech-
nique with the actual population at risk and a close represen-
tation of the actual mortality regime.

Reliability in the choice of model is distinct from relia-
bility in the choice of level. Reliable choice of model is an all-
or-nothing thing, as models are not ordered on a continuum.
Levels, however, are. Hence, reliable choice of level may be
expressed on a continuum such as: 1/ choice of level correct,
2/choice of level correct to within one level of mortality (equiv-
alent to 2.5 years expectation of life at birth for the Coale and
Demeny schedules), and 3/ choice of level correct to within
two levels of mortality.

The reliability test outlined above may be useful to the
demographic survey planner who has access to a high speed
computer. The reliability of our technique for population with
estimated age structure and mortality regime may be tested
with alternate sample sizes of total observed population at
risk. These tests may be used to inform the planner of the
adequacy of various sample sizes for producing reliable estim-
ates of age-specific mortality. Of course, the reliability of this
procedure itself depends on the extent to which the estimated
age structure of population at risk and estimated mortality
regime adequately represent the actual age structure of the
population and the actual mortality regime it experiences. How-
ever, initial tests of our proposed statistic (Fulton and Ristow,
1975) have indicated that its reliability does not change ra-
dically with moderate changes in age structure of population
at risk or with moderate differences in level of mortality.

We applied the methods outlined in this section of the
paper to Madigan’s (1971) mortality data for urban females,
yielding new estimates of age—spemflc mortality, rehab,lhty
estimates for the same, and alternate sizes of observed popu-
lation at risk needed to_vroduce results of varying reliability.
Our results are presented in the next section of the paper.

Results

Using the likelihood statistic, Madigan’s (1971) empirical
mortality data for urban females were compared with the
four families of Coale and Demeny (1966) model mortality
schedules, West, North, East, and South. The closest fitting
_ schedule is model West, level 20. Level 20 corresponds to an

L 2}
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expectation of life at birth of 67.5 years.

Reliability results are presented in Table 8. For technical
reasons the population(s) at risk in the simulation trials in-
cluded all age groups between the ages of 0 and 64, only. The
figure 11,320 represents the approximate number of urban
females between the ages of 0 and 64 surveyed by Madigan
(1971). The remaining three figures for size of population
at risk are multiples of 11,320, namely, 2x, 5x, and 10x, or
22,640, 56,600, and 113,200, respectively.

Recall that the reliability of the likelihool statistic is spe-
cific to the population under consideration, e.g. urban females,
Misamis Oriental.

Referring to Table 3, note that the likelihood statistic
was able to distinguish the correct model of mortality under-
lying simulated data sets of size 11,320 in 11 out of 20 trials,
or 55 percent of the time. This figure indicates “fair” reliabi-
lity. For reference, a 25 percent success rate would be attrib-
utable to chance alone, given four models to choose from. The
performance of the statistic in choice of model remained the
same with simulated data sets of size 22,640. However, per-
formance did increase for simulated data sets of size 56,600,
and then again for simulated data sets of size 113,200, with
85 percent success and 100 percent success, respectively.

The reliability of the statistic in regard to choice of level
likewise increased with increasing sample size. For simulated
data sets of size 11,320, the reliability of the statistic in choice
of level is good. Ninety-five percent (19 out of 20 trials) re-
sulted in choice of level within one level of the collect under-
lying mortality regime. (One level corresponds to 2.5 years
expectation of life at birth.) Correct choice of level was made
in 11 of 20 trials, or 55 percent of the time. For simulated data
sets of size 22,640, level was correctly chosen 70 percent of the
time (in 14 of 20 trials). For data sets of size 56,600, this
figure jumps to 85 percent (17 of 20 trials). Finally, for data
sets of size 113,200, the statistic chose correct level in all 20
trials. In no trial did the statistic choose a closest fitting level
beyond 2 levels of the correct underlying mortality regime.

Discussion

Madigan (1971) substituted model-derived mortality data
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for the empirical data collected from urban females. However,
nowhere dozs he specify the exact model schedule used for this
purpose, except to say that it belongs to the West family of Coale
and Demeny (1966). From information provided in his report
(1971), we deduce that the level of mortality of the model
‘West schedule in question is 22, which corresponds to an ex-
pectation of life at birth of 72.5 years.

Our results support Madigan’s a priori choice of model
West data. The likelihood statistic makes the same choice.
However, the reliability of this choice is less than good.

Our results do not support the choice we have attributed
to Madigan (above) in regard to level of mortality. The dif-
ference between his choice of level and ours (20) is 2 (levels),
equivalent to a difference in expectation of life at birth of
5.0 years. Further, the results of our reliability trials imply
that the likelihood statistic should make a two level error
(with the urban female data) only a very small percentage
of the time (5 percent in 20 trials). Thus, it is possible that
Madigan’s analysis has resulted in an underestimation of the
force of mortality experienced by the population in question.

More important than the possibility of error, however,
is the fact that Madigan’s choice of technique did not facilitate
estimation of the reliability of his choice of model data. Thus,
it is difficult to judge which set of data is more representative
of the actual force of mortality experienced by the urban fe-
males on Misamis Oriental, the raw data, relatively accurate
but burdened with imprecision, or the derived set, of unknown
accuracy but less anomalous.

Further, on the basis of Madigan’s (1971) results, it is
difficult to assess the adequacy of the sample size used in
his survey, except to say that the precision of the mortality
data would have been better had the sample size been larger.
Our results demonstrate that increasing the size of the popu-
lation at risk by a factor of 2, a large increase, would have
yielded data of only slightly improved precision. Locating the
position of the data in the dimension of model would not have
become perceptibly easier (more reliable). Locating the posi-
tion of the data in the dimension of level would have become
slightly easier, though probably not enough to warrant a doubling
in certain survey costs.

&k
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Thus, we hope that our technique contributes to the work
of those whose task is estimating the mortality regime ex-
perienced by small populations, by informing the process of
survey planning, and by aiding in the correction of imprecise
data. Toward this end the authors of this paper have pre-
pared computer programs capable of performing much of the
analysis presented above. The programs have been written in
FORTRAN IV and tested on an IBM 360/67. However, they
are small in size and should not require much revision to per-
form efficiently on smaller machines. Listings are available
on request.
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Age
Category

0-1

14

5-9
10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64

nDx

PR AWOCROOOWOO

nNx

310
1260
1300
1250
2150
1660
1010

710

500

360
260
230

180

140

Table I. — Work-shee-t-fof the Computation of C.

nMx

.04173

.00320
.00100
.00078
.00126
.00174
.00207
00244
.00301
.00389

.00540
.00784
01153

.01807

1-nMx

.95827
.99680
.99900
.99922
.99874
.99826
.99793
.99756
.99699
199611

199460

.99216
.98847
.98193

v-

-3.177
-5.745
-6.908
-7.156
-6.677
-6.354
-6.180
-6.016
-5.806
-5.549
-5.221
-4.849
-4.463
-4.014

-22.239
-63.195
0.0
0.0
-20.031
0.0
0.0
0.0

-23.224
0.0
-15.663
-19.396
-17.852
28..098

1n (nMx) nDx1n(nMx) nNx-nDx

303
1249
1300
1250
2147
1660
1010

710

496

360

257

226

176

133

Age-specific

1n (1-nMx) values of C
-.04263 -85.156
-.00321 -67.204
-.00100 - 1.300
-.00078 - 0.975
-.00126 -22.736
-.00174 - 2.888
-.00207 - 2.091
-.00244 - 1.732
-.00301 -24,717
-.00390 - 1.404
-.00542 -17.056
-.00787 -21.175
-.01160 -19.894
-.01824 -30.524

(Total) C=-248.852

»;
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Table 2. — Set of C* Values, Summarizing Closeness of Fit
between Coale and Demeny (1966) Model West
Family of Model Mortality Schedules and Empir-
ical Mortality Data from Urban Females, Misamis
Oriental (1971).

Level of Expectation of
Mortality Life at Birth C
1 20.0 401.6
2 22.5 346.7
3 25.0 301.6
4 27.5 263.7
5 30.0 231.2
6 32,5 203.0
7 35.0 : 178.4
8 375 156.7
9 40.0 137.5
10 42.5 120.5
11 45.0 105.3
12 475 91.8
13 50.0 79.8
14 52.5 69.2
15 55.0 59.8
16 57.5 51.8
17 60.0 45.3
18 62.5 40.4
19 65.0 317.3,
20 67.5 36.5
21 70.0 38.6
22 72.5 48.8
23 75.0 53.8
24 7.5 70.5

a — Values of C derived using complete version of likelihood statistic,
not computing formula. Both versions of C produce a unique
minimum value per model family which indicates the same
closest fitting model mortality schedule.

b — Minimum value of C for the model West family of model mor-
tality schedules.
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Table 3. — Ratio of Successes to Attempts at Finding Correct
Model and Level of Mortality Underlying Simulated
Mortality Schedules, Using the Likelihood Statis-
tic with Coale and Demeny Model Mortality Sched-

ules.
Size of Ratio of Percent
Population Successes Successful
at Risk to Attempts Attempts
11,320
Model Chosen Correctly 11/20 55
Level Chosen Correctly 11/20 55
Level Chosen Correctly
within One Level® 19/20 95
Level Chosen Correctly
within Two Levels? 20/20 100
22,640
Model Chosen Correctly 11/20 55
Level Chosen Correctly 14/20 70
Level Chosen Correctly
within One Level 20/20 100
Level Chosen Correctly
within Two Levels 20/20 100
56,600 .
Model Chosen Correctly 17/20 85
Level Chosen Correctly 17/20 85
Level Chosen Correctly
within One Level 20/20 100
Level Chosen Correctly
within Two Levels 20/20 100
113,200
Model Chosen Correctly 20/20 100
Level Chosen Correctly 20/20 100
Level Chosen Correctly
within One Level 20/20 100
Level Chosen Correctly ‘ -
" within Two Levels 20/20 100

a — This distance equivalent to 2.5 years expectation of life at birth.
b — This distance equivalent to 5.0 years expectation of life at birth.

R
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Age Group®
Figure 1. — Natural log of age-specific central death rates,

urban females, Misamis Oriental, September 1
— December 31, 1971.

-1

-2

-3

-0

-5

In (Age-Specific Central Death Rates)

1, 3 4 5 6 78 9 .10 11 12 13 14 15

00 ~TMU W
pd
g
Jad
©
]
[
<]
Iz 1
/-]

14 : 60-64 years
15 : 65 years and over




18 JOHN FULTON, RICHARD RISTOW

Lge
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Figure 2. — Comparison: Age structure of urban females, Mi-

samis Oriental, November 1, 1971, with age struc-
ture of table population chosen to represent urban
females, (Coale and Demeny, Model West, Level
22, Growth Rate equivalent to 35 / 1000 / year.)



